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Nuclear Inositol Lipid Metabolism:
More Than Just Second Messenger Generation?
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Abstract A distinct polyphosphoinositide cycle is present in the nucleus, and growing evidence suggests its
importance in DNA replication, gene transcription, and apoptosis. Even though it was initially thought that nuclear inositol
lipids would function as a source for second messengers, recent findings strongly indicate that lipids present in the nucleus
also fulfil other roles. The scope of this review is to highlight the most intriguing advances made in the field over the last few
years, such as the possibility that nuclear phosphatidylinositol (4,5) bisphosphate is involved in maintaining chromatin in a
transcriptionally active conformation, the new emerging roles for intranuclear phosphatidylinositol (3,4,5) trisphosphate
and phosphoinositide 3-kinase, and the evidence which suggests a tight relationship between a decreased level of nuclear
phosphoinositide specific phospholipase C-b1 and the evolution of myelodisplastic syndrome into acute myeloid
leukemia. J. Cell. Biochem. 96: 285–292, 2005. � 2005 Wiley-Liss, Inc.
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The presence in the nucleus of both poly-
phoshoinositides and the enzymes responsible
for their metabolism has suggested that they
may constitute a signaling system [Divecha
et al., 2000; Irvine, 2003]. It is noteworthy that
nuclear inositol lipid metabolism is indepen-
dently regulated from its plasma membrane
counterpart and is modulated in response
to short-term growth factor signaling, cell

cycle progression and during differentiation
[Martelli et al., 2004]. Central to the regulation
of nuclear inositol lipid signaling is PI-PLC.
PI-PLC catalyzes PtdIns(4,5)P2 hydrolysis to
yield two fundamental second messenger:
Ins(1,4,5)P3 and DG. Several PI-PLC isoforms
have been identified in the nucleus but the -b1
isozyme is the best characterized [Cocco et al.,
2001]. In response to short term stimulation of
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quiescent Swiss 3T3 cells with IGF-1, nuclear
PI-PLC-b1 is activated by p42/44MAPK-depen-
dent phosphorylation and subsequently down-
regulated by another phosphorylation step
effected by PKC-a, which is attracted to the
nucleus by the DG produced by PI-PLC-b1 [Xu
et al., 2001a,b]. Overexpression of PI-PLC-b1 in
the nucleus is sufficient to drive 3T3 cells into S
phase [Xu et al., 2001a]. In MEL cells, up-
regulation of nuclear PI-PLC-b1 activity corre-
lates with increased progression through the
cell cycle [Faenza et al., 2000], whereas DMSO-
induced differentiation causes down-regulation
of nuclear PI-PLC-b1, an increase in nuclear
phosphoinositide, and a decrease in nuclear DG
mass [Divecha et al., 1995]. Moreover, a rise of
nuclear PtdIns and PtdIns(4,5)P2 mass takes
place as synchronized NIH 3T3 cells progress
fromG0 toG1/Sboundary [Stallings et al., 2005].
Therefore, in response to a variety of signals,
activation/deactivation of PI-PLC-b1 and in-
ositide metabolizing enzymes will generate
different patterns of PtdIns, PtdIns(4,5)P2,
and DG within the nucleus [Martelli et al.,
2003]. The D3-phosphorylated phosphoinosi-
tide PtdIns(3,4,5)P3, which is the product of
PI3K, is also present in the nucleus [Neri et al.,
2002]. PtdIns(3,4,5)P3 in the cytoplasm acti-
vates a variety of kinases, including Akt and
PDK1, therefore influencing many cell res-
ponses [Prestwich, 2004]. However, the nuclear
processes regulated by the PI3K signaling
system have not yet been fully elucidated, even
though it has been shown that nuclear
PtdIns(3,4,5)P3 is important for recruiting to
the nucleus PKC-z [Neri et al., 1999]. A funda-
mental issue would be to understand whether
the role of nuclear inositol lipids is restrict-
ed to the generation of second messengers or
whether these lipids may function by them-
selves to regulate nuclear processes.

In this review, we shall highlight the most
recent findings suggesting an involvement of
PtdIns(4,5)P2 in chromatin organization, as
well as emerging data on new functions played
by nuclear PI3K and PtdIns(3,4,5)P3. Finally,
we shall overview the evidence which links
decreased levels of nuclear PI-PLC-b1 to the
evolution of MDS in AML.

PtdIns (4,5)P2 AND
CHROMATIN ORGANIZATION

Previous findings dating back to the seventies
showed that addition of phospholipids to pur-

ified nuclei could influence in vitro transcrip-
tion. Indeed, negatively charged lipids led to
chromatin decondensation, whereas positively
charged lipids had the opposite effect [Manzoli
et al., 1982]. Support to the hypothesis of a
phosphoinositide-mediated control of transcrip-
tion has come from an in vitro study which
showed that in a Drosophila in vitro transcrip-
tion system, PtdIns(4,5)P2, when present at
10 mM, counteracted the histone H1-mediated
repression of basal transcription by RNA poly-
merase II [Yu et al., 1998].

Moreover, a novel mechanism for the regula-
tion of chromatin structure by inositol lipids
came with the unexpected discovery that the
interaction of the chromatin remodeling com-
plex BAF could be regulated by the level of
PtdIns(4,5)P2 [Zhao et al., 1998]. Resting T-
lymphocytes have small, compact nuclei with
dense heterochromatin which, upon antigenic
stimulation, increase in size with the appear-
ance of euchromatin. These chromatin changes
are conceivably required for the activation of T-
cell specific genes. In response to T-lymphocyte
stimulation with an antibody to the T-cell
receptor, the BAF complex becomes associated
with an insoluble nuclear fraction, conceivably
corresponding to the nuclear matrix. Interest-
ingly, BAF insolubilization could be mimicked
by incubating resting T-cell nuclei with exogen-
ously added PtdIns(4,5)P2. However, even
though these findings are consistent with a role
for PtdIns(4,5)P2 in regulating BAF complex
localization, there is no evidence which indi-
cates an increase in nuclear PtdIns(4,5)P2mass
in response to T-cell activation. What are the
molecular mechanisms underlying the interac-
tion between PtdIns(4,5)P2 and BAF? The BAF
complex is composed of several proteins includ-
ing actin, BAF53, and Brg1, which has ATPase
activity. Brg1 has two domains which can
interact with actin, one of which contains a
lysine-rich stretch [Bourachot et al., 1999]. This
lysine-rich domain is required for Brg1 function
in vivo and importantly is capable of interacting
with PtdIns(4,5)P2 [Rando et al., 2002]. Itmight
be that PtdIns(4,5)P2 disrupts the interaction of
Brg1 with actin resulting in the exposure of a
site on actin which binds to the nuclear matrix.
In other words, the mechanism would be
analogous to PtdIns(4,5)P2-mediated uncap-
ping of actin, which stimulates actin polymer-
ization [Schafer et al., 1996]. Interestingly, the
retinoblastoma protein, which recruits BAF
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complex to regulate gene expression [Olave
et al., 2002], interacts with and activates type
I PIPkinase, the enzyme which synthesizes
nuclear PtdIns(4,5)P2 [Divecha et al., 2002].
Therefore, it has been suggested that BAF
chromatin remodeling complex may interact
with and recruit type I PIPkinase to control
localized PtdIns(4,5)P2 synthesis [Jones and
Divecha, 2004].
Further support to the hypothesis of a

PtdIns(4,5)P2-mediated control of chromatin
organization has come from an investigation
which shows that SKTL, a predictedDrosophila
type I PIPkinase, interacts in vitro and in vivo
with ASH2, a trithorax group protein [Cheng
and Shearn, 2004]. The gene sktl encodes a
protein that is 59% identical to human type I
PIPkinase and 58% identical to mouse type I
PIPkinase. Interestingly, SKTL possesses a
NLS, while ASH2 is known to localize to nuclei
by immunohistochemistry. Most significantly
for this review, ASH2 contains a PHD finger,
i.e., a putative double zinc finger involved in
mediating protein–protein interactions and
modifying chromatin structure. Furthermore,
PHD fingers may act as domains capable of
binding nuclear polyphosphoinositides [Gozani
et al., 2003]. Both SKTL and ASH2 accumulate
on polytene chromosomes. Since histone H1
hyperphosphorylation within euchromatin dra-
matically increased on sktl and ash2 mutant
polytene chromosomes, it has been suggested
that PtdIns(4,5)P2 might play a role in main-
taining transcriptionally active chromatin via
histone H1 phosphorylation. During the assem-
bly of nucleosomes, histone acetylation re-
gulates histone H1 binding and chromatin
condensation [Ridsdale et al., 1990; van Holde
and Zlatanova, 1996]. Displacement of histone
H1 is required prior to target gene acetylation
and transcription activation, because histone
H1 inhibits histoneH3 acetylation by hindering
the access of histone acetyltransferases to
histone H3 tail. It has been predicted that
chromatin remodeling complexeswould contain
components that modify histone H1-chromatin
interactions [Herrera et al., 2000]. Thus, it
might be hypothesized that the PHD finger of
ASH2 would bind PtdIns(4)P which could then
be processed to PtdIns(4,5)P2 by SKTL. When
the ASH2-SKTL complex binds to chromatin, a
source of PtdIns(4,5)P2 could bind to and dis-
place histone H1. The displacement of histone
H1wouldprevent its hyperphosphorylationand

allow for chromatin decondensation, histone
acetylation, and, eventually, activation of tran-
scription [Cheng and Shearn, 2004].

NEW ROLES FOR NUCLEAR PI3K AND
PtdIns (3,4,5)P3

Class I PI3Ks were originally characterized
as lipid kinases, although more than 10 years
ago they were also shown to phosphorylate
protein serine residues [Foukas and Shepherd,
2004]. So far, two proteins have been clearly
identified as substrates for PI3K.One of them is
the p85a regulatory subunit of PI3K itself,
which is phosphorylated on Ser608 by the
p110a catalytic subunit [Foukas et al., 2004].
This phosphorylation step down-regulates the
lipid kinase activity and occurs in vivo in
response to stimulation with growth factors,
including insulin and platelet-derived growth
factor. In contrast, p110b and p110d autopho-
sphorylate on Ser1070 and Ser1039, respectively
[Vanhaesebroeck et al., 1999; Czupalla et al.,
2003]. Also in these cases, autophosphorylation
results in a decreased lipid kinase activity. The
other protein substrate for PI3K has been
identified as IRS-1 which is serine phosphory-
lated in response to insulin or interferon chal-
lenging [Lam et al., 1994; Uddin et al., 1997].

However, a new potential protein substrate
for PIK has been recognized in the nucleus.
Recent evidence has shown that the UBF1, a
regulator of RNA polymerase I activity which
resides exclusively in the nucleolus, is phos-
phorylated in response to IGF-1 stimulation of
mouse fibroblasts ormyeloid cells [Drakas et al.,
2004]. Following IGF-1 stimulation, IRS-1
migrates to nucleoli where it associates with
UBF1 and the p110b subunit of PI3K. Con-
sidering that: (a) IRS-1 is a powerful activator of
PI3K; (b) a highly purified PI3K was capable of
phosphorylating UBF in vitro; (c) in vivo and
in vitro phosphorylation ofUBF1was decreased
by thePI3K inhibitor LY294002; it was conclud-
ed that PI3K is the most reasonable candidate
for an IGF-mediated phoshorylation and activa-
tion of UBF1 [Drakas et al., 2004; Wu et al.,
2005]. Although these findings appear very
intriguing,we feel that, to reach this conclusion,
additional experiments would be required.
First, it would be necessary to demonstrate by
immunocytochemistry that p110b migrates to
nucleoli in response to IGF-1 challenging or it is
resident there. Secondly, phosphopeptide map
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analysis should be performed to show that in
vivo phosphorylation pattern ofUBF1 is equiva-
lent to its in vitro phosphorylation by purified
PI3K. Indeed, it is known that UBF1 can be
phosphorylated also by p42/44 MAPK and CK2
[Voit et al., 1999; Stefanovsky et al., 2001].
Interestingly, CK2 is inhibited by LY294002
[Tolloczko et al., 2004] and there are reports
showing that LY294002 could also block MAPK
activation [Zhuang et al., 2004]. Furthermore,
p42/44 MAPK is a classical downstream target
of IGF-1 [e.g., Radcliff et al., 2005].

PI3K/Akt pathway is by far the most im-
portant signaling network for cell survival
[Downward, 2004]. Traditionally, anti-apopto-
tic signaling by PI3K/Akt has been thought to
take place at the plasmamembrane level and in
the cytoplasm [Franke et al., 2003]. However,
recent findings point to the likelihood that also
nuclear PI3K plays an essential role in promot-
ing cell survival through nuclear PtdIns
(3,4,5)P3 andAkt. InPC12 cells,NGF treatment
elicits powerful anti-apoptotic signaling cas-
cades [Patapoutian and Reichardt, 2001]. In
response to NGF, PI-PLCg1 translocates to the
nucleus where it acts as a physiological gua-
nine-nucleotide-exchange factor for PIKE-S [Ye
et al., 2002]. PIKE-S is a nuclear-specific
GTPase that enhances PI3K activity and is
regulated by protein 4.1N [Ye et al., 2000; Ye
and Snyder, 2004]. Although PIKEwas initially
thought to reside only in the nucleus of nervous
cells, it has been detected also in rat liver nuclei
[Klein et al., 2004]. Therefore, PIKEmight be a
widespread regulator of nuclear PI3K activity.
PI3K migrates to the PC12 cell nucleus in
response to NGF [Neri et al., 1999]. Taking
advantage of a cell-free system, it has been
shown that nuclei isolated from NGF-treated
PC12 cells were resistant to DFF40/CAD-
dependent DNA fragmentation initiated
in vitro by activated cell-free apoptotic solution,
consisting ofHEK293 cell cytosol supplemented
with purified active caspase-3 [Ahn et al., 2004].
Nuclei from constitutively active PI3K adeno-
virus-infected cells displayed the same resis-
tance as those treated by NGF, whereas PI3K
pharmacological inhibitors, immunodepletion
of PI3K from nuclear extracts with anti-p110
antibody, and dominant negative PI3K or PIKE
abolished it. PtdIns (3,4,5)P3 alone, but not
PtdIns (3,4)P2, PtdIns (4,5)P2 or PtdIns (3)P,
mimicked the anti-apoptotic effect of NGF. The
involvement of nuclear PtdIns (3,4,5)P3 in the

protecting role of NGF was also substantiated
by an experiment in which isolated nuclei were
preincubated with PTEN (which dephosphor-
ylates PtdIns (3,4,5)P3 to PtdIns (4,5)P2) and
then analyzed for DNA fragmentation. It was
found that PTEN pretreatment abolished the
protective effect of NGF, even though it was not
demonstrated that PTEN actually decreased
the amount of PtdIns (3,4,5)P3. In this connec-
tion, a good control would be constituted, in our
opinion, by a mutated PTEN lacking the lipid
phosphatase activity [Ramaswamy et al., 1999].
Since NGF treatment stimulates migration of
phosphorylated Akt to the nucleus of PC12 cells
[Borgatti et al., 2003], the role of nuclear Akt in
the antiapoptotic action of NGF was also
examined. It turned out that nuclei isolated
from cells overexpressing wild type or constitu-
tively active Akt were resistant to internuc-
leosomal DNA cleavage, whereas those from
dominant-negative Akt-infected cells showed
DNA cleavage in spite of NGF treatment,
demonstrating that nuclear Akt is required for
NGF-mediated anti-apoptotic signaling (see
Fig. 1). Nevertheless, in the absence of NGF
treatment all the nuclei displayed DNA degra-
dation, suggesting that Akt activation alone
is not sufficient to inhibit DNA cleavage.
The down-stream effectors of nuclear PtdIns
(3,4,5)P3 which prevent apoptosis have yet to be
identified, however it should be emphasized
that nuclear PtdIns(5)P modulates p53 activity
and cell death through the interaction with its
nuclear receptor ING2 [Gozani et al., 2003].

Furthermore, it should be emphasized that
PIKE-mediated NGF-dependent cell survival
also in intact cells, because apoptosis induced by
staurosporine wasmuch higher in PC12 cells in
which PIKE has been knocked down by means
of antisense oligonucleotides [Ahn et al., 2004].

NUCLEAR PI-PLC-b1 AND DISEASE

Although several distinct isozymes of PI-PLC
have been detected in the nucleus, the isoform
that has been most consistently highlighted as
being nuclear is PI-PLC-b1. Nuclear PI-PLC-b1
has been linked with either cell proliferation or
differentiation [Cocco et al., 2001]. Our labora-
tory has recently shown the possible involve-
ment of PI-PLC-b1 in MDS. MDS constitutes a
heterogeneous group of hematological disorders
characterized by peripheral blood cytopenia
secondary to bone marrow dysfunction and
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occurs predominantly in adult patients (usually
>60 years of age). It evolves in AML in about
30% of the cases after variable intervals from
diagnosis [Steensma and Tefferi, 2003]. The
clinical transition is demonstrated by the clonal
proliferation of the hematopoietic precursor
that generates leukemic blasts unable to differ-
entiate [Hofmann et al., 2004]. It is considered
that the evolution to AML is associated with
additional genetic changes acquired by MDS
patients. Moreover, AML evolving fromMDS is
much less responsive to chemotherapeutic
agents than is de novo AML [Steensma and
Tefferi, 2003]. Approximately half of MDS
patients have a detectable chromosome
abnormality, usually a total or partial deletion
of chromosome 5 or 7 and/or trisomy 8, whereas
translocations and amplifications are not very
frequent. Allelic loss has been found in chromo-

some 6q, 7p, 10p, 11q, 14q, and 20q, and, even if
there is no specific relationship betweenmost of
the rearrangements and the clinical outcome,
MDS patients with abnormal karyotype are
usually thought to be at a higher risk for
developing AML than MDS patients having
normal karyotype [Tchinda et al., 2003]. Never-
theless, the management of MDS patients
showing normal karyotype by means of classic
cytogenetic techniques is still a problem. It has
recently been observed that the clinical follow-
up of these patients is not sufficient since some
of them have surprisingly worse and poorer
clinical outcome than expected [Steensma and
Tefferi, 2003].

Our group had previously mapped the gene
encoding PI-PLC-b1 to the short arm of chromo-
some 20 [Peruzzi et al., 2000]. In a group of AML
patientswith anundefined karyotype due to the

Fig. 1. Nerve growth factor (NGF) elicits nuclear
PtdIns(3,4,5)P3-dependent anti-apoptotic signaling in PC12
cells. In response to NGF treatment, there is intranuclear
migration of a class IA PI3K (composed of a p110 catalytic
subunit and a p85a regulatory subunit). Concomitantly, also PI-
PLCg1 translocates to the nucleus. The SH3 domain of PI-PLCg1,
acting as GEF, stimulate the activity of the nucleus-specific
GTPase, PIKE. The target of the PI-PLCg1 SH3 domain is one of
the three proline-rich domains (PRD) of PIKE. PIKE then interacts
with the p85a subunit of PI3K whose activity is stimulated. PI3K
synthesizes intranuclear PtdIns(3,4,5)P3 from PtdIns(4,5)P2. Later
on, protein 4.1N enters the nucleus to down-regulate PI3K
activity. In non-apoptotic cells, DFF exists in the nucleus as a

heterodimer, composed of a 45-kDa chaperone and inhibitor
subunit (DFF45) (also called inhibitor of CAD (ICAD-L)) and a 40-
kDa latent nuclease subunit (DFF40/CAD). Apoptotic activation
of caspase-3 or -7 results in the cleavage of DFF45/ICAD and
release of active DFF40/CAD nuclease [Widlak and Garrard,
2005]. PtdIns(3,4,5)P3, through its interaction with yet unidenti-
fied nuclear receptor(s), blocks DFF40/CAD-dependent DNA
fragmentation. To this end, phosphorylated (activated) nuclear
Akt is also necessary but not sufficient. Akt recruiting at the
plasma membrane requires PtdIns(3,4,5)P3 synthesized by
receptor-associated PI3K, while its phosphorylation is dependent
on PDK1 and another, as yet unidentified, protein kinase
(S473K).
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presence of complex chromosome rearrange-
ments and indecipherable markers, SKY ana-
lysis disclosed rearrangements of chromosome
20 consisting in total or partial gains or losses in
five individuals. Using a specific probe for the
PI-PLC-b1 gene, FISH analysis disclosed the
loss of one allele of the gene in all the patients
examined [Lo Vasco et al., 2004]. Rearrange-
ments of the short arm of chromosome 20 have
been detected in a number of patients with solid
tumors but rarely in hematological disorders
[Peruzzi et al., 2000]. In all five patients the 20p
rearrangement was associated with the dele-
tion of PI-PLC-b1 gene. Nevertheless the asso-
ciation with other chromosome aberrations
hampered the definition of the role played by
the 20p abnormalities in both the origin and the
evolution of the disease [Lo Vasco et al., 2004].

More interesting appear the data about
patients affected by MDS or AML and having
normal high resolution GTG banding karyo-
type. We found that the AML patients with PI-
PLC-b1 genemonoallelic deletion died in a time
frame ranging from 1 to 12 months and all
the MDS patients with the deletion died in a
time frame ranging from 1 to 6 months after
developing AML. The total painting for chromo-
some 20 resulted normal in all of the MDS and
AML patients [Lo Vasco et al., 2004]. To
establish the amplitude of the deletion and the
possible involvement of genes other than PI-
PLC-b1 within the 20p12 region, we used a
probe for another gene localized in the same
band, PI-PLC-b4 gene (being the distance
between the two gene as long as less than 0.1
Mb). FISH analysis revealed that all patients
bearing the monoallelic deletion of PI-PLC-b1
were normal as far as PI-PLC-b4 gene was
concerned, suggesting that the absence of one
allele of PI-PLC-b1 gene could be due an
interstitial deletion as wide as less than 0.1
Mb [Lo Vasco et al., 2004]. Immunocytochem-
ical analysis by means of anti PI-PLC-b1 anti-
body, on all the AML and MDS patients that
resulted normal at FISH analysis, showed
normal staining of the nucleus. In contrast, all
the AML and MDS patients bearing the mono-
allelic deletion of PI-PLC-b1 gene show reduced
nuclear immunostaining intensity when com-
pared to controls.

It is worthwhile mentioning here that the
clinical evolution and the progression of the
disease of the MDS patients with monoallelic
PI-PLC-b1 gene deletion, has been worse than

expected. Therefore, the genetic anomaly affect-
ing a key signaling PI-PLC seems to be critical
for pathophysiology of MDS and these data
make the first clue that PI-PLC-b1 might be
involved in the progression of the disease.
However, we do not know how deletion of one
allele of the PI-PLC-b1 gene with a consequent
reduction of the amount of nuclear PI-PLC-b1
protein might affect the evolution of MDS. It
might be that such a reduction negatively
affects the differentiation program of MDS
blasts. This would be somehow in contrast to
our previous findings in MEL cells, because
DMSO-induced erythroid differentiation is
accompanied by a reduction of nuclear PI-PLC-
b1 levels [Martelli et al., 1994]. Nevertheless,
differentiation of C2C12 rat myoblasts in
response to mitogen withdrawal and insulin
stimulation is characterizedbyamarked increase
in nuclear PI-PLC-b1 [Faenza et al., 2003].
Moreover, the expression of a transfected PI-
PLC-b1 mutant lacking the NLS acted as a
dominant negative for nuclear translocation of
PI-PLC-b1 and suppressed the differentiation of
C2C12 myoblasts into multinucleate myotubes.
These results suggest that nuclearPI-PLC-b1 is a
key player in myoblast differentiation by func-
tioning as a positive regulator in this process.
Thus, it might be that, depending on cell system
and stimuli, nuclear PI-PLC-b1 has opposite
effects on the outcome of the differentiation.

CONCLUDING REMARKS

Evidence reviewed here strongly suggests
that the role of nuclear inositol metabolism goes
beyond the generation of second messengers.
The identification of nuclear inositide-binding
proteins has established potential novel func-
tions for these lipids within the nucleus, such as
chromatin organization control and mRNA
splicing [Osborne et al., 2001]. Signals that
induce processes such as differentiation, pro-
liferation, and apoptosis induce changes in
inositol metabolism.We feel that a combination
of compartmentalized and temporal changes in
nuclear PtdIns (4,5)P2 or PtdIns (3,4,5)P3might
be detected by phosphoinositide-binding pro-
teins to elicit different cellular responses, includ-
ing changes to regulate gene expression, DNA
replication or chromatin degradation.Moreover,
the identificationofadiseasesuchasMDSwhose
malignant evolution seems to be tightly depen-
dent on the amount of nuclear PI-PLC-b1
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suggests that inositol lipids and their metaboliz-
ing enzymes might become interesting targets
for the development of new therapeutic strate-
gies for the treatment of cancer.
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